Login for faster access to the best deals. Click here if you don't have an account.

TCXO, Temperature Compensated Crystal Oscillator Professional

2 weeks ago   Freebies   Napier   21 views

0.0 star

Location: Napier

Temperature performance of crystal oscillator

Crystal oscillators are able to provide a much better level of performance than that provided by LC resonator circuits. Nevertheless crystal oscillators are still affected by temperature.

The angle of the cut and other aspects of the quartz crystal have a major impact on the performance.

As a result special cuts are defined and one known as the AT cut is the most widely used for these and many other quartz crystal RF applications. This gives a good level of performance for RF circuits in terms of suppression of unwanted modes of vibration as well as the frequency range available, and also the temperature stability.

Despite this, AT cut crystals on their own cannot meet the requirements for many applications and temperature compensation is required if they are to perform satisfactorily over the required range - often 1 - 70°C at elast is needed.

The effects of temperature are, to a large degree, repeatable and definable. Therefore it is possible to have an electronic design to compensate for this. By adding additional electronic components to the basic oscillator, it is possible to considerably reduce the effects caused by temperature changes: a temperature compensated crystal oscillator, TCXO.

TCXO solution

A TCXO adjusts the frequency of the oscillator to compensate for the changes that will occur as a result of temperature changes. To achieve this, the main element within a TCXO is a Voltage Controlled Crystal Oscillator, VCXO. This is connected to a circuit that senses the temperature and applies a small correction voltage to the oscillator as shown below.


The history of the development in crystal filter technology, from the initial concepts of Cady to the current wide range of products, provides a fascinating chapter in the development of today’s highly complex electronic products. The crystal filter has been a particularly critical element in the development of narrowband communications systems. The desire to send multiple voice messages on a single telephone line resulted in the introduction of carrier telephone systems in 1916. These early systems used LC filters in the 10 to 40 kHz frequency range. However, the bandwidth limitations caused by realizable coil Q’s were quickly recognized. In 1929, W.P. Mason of Bell Laboratories developed methods for incorporating crystals into LC lattice filter networks. This work resulted in the development of a 60 to 108 kHz basic group-band filter set used to frequency multiplex 12 voice channels. This work is described in Mason’s 1934 paper which was the basis for essentially all crystal filter designs generated during the next 20 years. During this period the major application for crystal filters was in carrier telephone equipment. However, in the mid-1950s, newer narrowband radio communications systems were developed both for military and commercial use which required high-frequency, stable, narrow-bandwidth filters. In most cases, crystal filters were the answer for these filtering applications and a new manufacturing industry was formed to supply these needs. Other applications quickly followed in navigation and radar equipment, in new fire-control systems, and missile control systems. This increased level of activity resulted in new filter design procedures and substantial improvement in the quality of high-frequency filter crystals.

In the 1960s another major technology step occurred with the development of monolithic crystal filters. Through the 1970s and ’80s evolutionary improvements were made with the development of multi-pole monolithic filters and the extension of the high frequency limits through continued process improvements. Significant theoretical work was also accomplished in this period in the area of device modeling. High frequency limits are still being pushed today with blank etching techniques and improved photo-lithography.


This ad has no reviews yet. Be the first to leave a review.